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Kiefer-Muller Process

Let (Xn)new be iid uniformly on [0, 1] and Fp(t) := L 57 11x <p. Then

] ,
(%(ns(Fns(l‘) - .t))) selou] converges weakly to a Gaussian process
(G(t,5))t,sep0,1) With

EG(t,s)G(t',s') = min{s, s'}(min{t, '} — tt').

Theorem (Kiefer, 1972)

There exists (after enlarging the probability space) a Gaussian process
(G(t, 8))t,sc[0,1] Such that almost surely

1 1 2
sup — |ns(Fps(t) — t) — G(t,8)] = O(ns logs n).
LSG[&]WI (Fns(t) — 1) = G(t, s)| = O( g3 n)

O =] = = = pa—_—
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Bahadur Representation

I Fr(t)
,—l
Foltp) p====---~ | F(1)
-
p _____ |
— i
— l
th=F~"(p) "
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Fr '(p) == inf{t|Fy(t) > p}
Fn(tp) - p ~ f(tp) _ F/(tp)
_ P~ Falp)
O
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Bahadur Representation |l

_ p— Fa(t
Frite) 1o = B+ A
How to find bounds for R,?
_Falto) =P | 1
_ —1
s Fn(tp) Fn(Fl’l (p)) o (tp - F;1 (p))
f(to)

Theorem (Bahadur, 1966)

Let (Xn)nen be iid. Then almost surely

1

R, = O(n‘%(log n)z(loglog n)#) y
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Hoeffding Decomposition

Definition

g : R? — R measurable and symmetric

Un(9)

1

The (bivariate) U-statistic U, (g) with kernel h is defined as

2) 1<

a(Xi, X;)
Example: Gini’s mean difference

2
G = n(n—1)

=)
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Hoeffding Decomposition |l

Un (g) can be decomposed into a linear part and a degenerate part
=0+ — Z 91(Xi) + Un(92)

with Var Up(g2) = O(-5). The CLT for partial sums together with
Slutzky’s lemma imply:

Theorem (Hoeffding, 1948)

If (Xn)new is a sequence of iid random variables and Var g(X, Y) < oo
then
vV (Up (h) — 0) = N (0,4 Var gi(Xy)).

=] =) = = E QR
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U-Distribution Function

h: R® — R bounded, measurable function, symmetric in first two
arguments, nondecreasing in third argument,

Definition (Empirical U-distribution function)

We define

2
Un(t) = h(X;, Xj, t).
l’l() n(n1)1§§Sn ( i i )

(Un(t))scr is called empirical U-distribution function.

> example: h(x,y,t) = Ligx y)<t)
Un(t) empirical distribution function of the sample
(9(Xi, X))1<i<j<n
» natural estimator for U-distribution function
U(t) = Elh(X, Y, t)] = Plg(X,Y) < t], where X, Y independent
= = = = = 9
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U-Quantiles

Generalization of quantiles:
Definition (U-Quantile)

Letbe p € (0,1). t, = U, (p) := inf {t|Un (t) > p} is called the p-th
empirical U-quantile.

» natural estimator of the U-quantile t, := U~'(p)

> for h(x, y,t) = 1ig(x,y)<n: SMallest p-quantile f, of the sample
(9(Xi, Xj))1<i<j<n
» example: median of absolute differences

Q, = median { | X; — Xj|

1§i<j§n}

] = P
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Generalized Linear Statistics

Definition (GL-Statistic)

Let be p1,

,Pag € (0,1), by,

continuous a.e. and vanishes outside of /

bys € R and J a bounded function
T, = / J(p

p)dp + Z bU,
n(n 1)

Z/n(nﬂ )t - U ( 2i
5(/1 n(

n
is called generalized linear statistic (GL-statistic)

d
! 1)) +3 b (B)
J=1

[m]
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Generalized Linear Statistics |l

» Let h(X,y, t) = ]l{\x—y\gt}y pP1 = 0.5, b =1. The related
GL-statistic is the median of absolute differences

> Let h(x,y,t) == 3 (Lix<ty + Ly<py), p1 = 0.25, p, = 0.75,
b1 :—1,b2:1,andJ:0.
T,= F,'(0.75) — F;'(0.25)

is the inter quartile distance.
» Let h(x,y,t) = ]l{%(x_y)zgt}, p1 =0.75, by = 0.25 and

J(x) = Lxep0,0.75)3- The related GL-statistic is called winsorized
variance.

o = = = = ©ac
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Definition (Strong mixing)

a(k) :=sup  sup
neNAcF],BeFSS

|P(An B) — P(A)P(B)|,
n+k
where 7} is the o-field generated by r.v’s X,

X
(Xn) e is called strongly mixing, if a(k) — 0 as k — oc.

Definition (Absolute Regularity)

B(k) = :gﬂeE sup{|P(A|F ) — P(A)| : Ae Fpik}

(Xn)nen is called absolutely regular, if 3(k) — 0 as k — oc.
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Near Epoch Dependence

Definition (Near epoch dependent sequence)

Assume that X, = f ((Zr+k)xcz,) for a stationary process (Z5) ez
(Xn) ez is called a Near epoch dependent, if
E|X — E(X1|Z_,

..,Z,)]ga, I=0,1,2...
examples:

with a, — 0.

1. linear processes (with absolutely regular innovations)
2. data from dynamical systems X,.1 = T (Xp)

RUB  Wendler
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General Assumptions

Assume that one of the following two mixing conditions hold:
(M1) (Xh) ey is strongly mixing with mixing coefficients a(n) = O(n~*)
for o > 8 and E|X|" < occforar > 1.

n
(M2) (Xh),cn is near epoch dependent on an absolutely regular

process with mixing coefficients 3(n) = O(n=") for 8 > 8 with
approximation constants a(n) = O(n~2) for a= max {3 + 3,12}.

U(t) := Eh(X, Y, t) differentiable on (Cy, Cy) with
0 <infie(cy,cp) U'(1) < SUPie(c, c,) U'(E) < oo and

sup

5,te(Cy,Cp): |t—s|<x

Uty — U(s) - U(t)(t—s)| = O (x

5
4
RUB  Wendler
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General Assumptions Il

continuity condition:

Definition (Variation Condition)

E

sup

h satisfies the variation condition with constant L, if forall e > 0

‘h(xayv t) - h(Xv Yv t)|
() —(X, Yl <e

< Le,
where X, Y are independent with same distribution as Xj.

RUB  Wendler

1y x—y|<ty satisfies the variation condition if Xy has bounded density.
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Empirical U-Process

Theorem (W., 2011)

There exists a centered Gaussian process (K(t, S))t ser With
EK(t,s)K(t,s') = min{s,s'} (4Cov[hs (Xi,t), h (X, t)]

+4% Cov[h (X, 1), (Xks, )]
k=1

+4> Cov[h (Xier, 1), hy (Xi, 1)]).
k=1

such that almost surely

tER?gep[071] f‘ [ns|(Upps (1) — U(t)) — K(t,ns)| = o(1).

u =1} =
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Empirical U-process Il

Theorem (W. 2010)
As. asn— oo

sup

Lt [t=t!|<C. /22080

|Un (t) = Un (') — u(t)(t—t)]

=0 <n‘%‘%7 log n)
for some v = (0,1).
Proof is based on

» Hoeffding decomposition

» 4th moment inequalities

RUB  Wendler
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Generalized Bahadur Representation

Anlp) = 2P U )t

 Un(to) = Un(Uy ' (p)) _

~ £ U(tp) - (tp - Un ! (p))
> SUPcr |Un(t) — U(L)] = o( '°9';,’9”> as.
> sup Ry(p) < C sup |Un (1) = Un (') — u(t)(t — 1)

i Lo |t—t|<Cy/leloan
Theorem (W., 2011)

A.s.asn— oo

1 1
supR,=o0 (n‘?‘é” log n)
pel 3
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Empirical U-Quantile Process

Theorem (W., 2011)

Under the technical assumptions above there exists a centered
Gaussian process (K'(p, S))pe1,scr With covariance function

EK'(p,s)K'(p', s ———EK(ty, 8)K(ty,
such that

Su ns P
—_ sep[071]f I_ J( Lnsj( )

to) — K'(p ns)

— =0(1).
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Generalized Linear Statistics

d
nzumﬂ:%memmw+Z@m%m

j=1

#=//HWAUW@n«m«mwm

d d
123 p //EK’(p, 1)K (p;, 1)J(p)db+ S bibEK'(p1, 1)K (py, 1)
=

i:j=1

Theorem (W., 2011)

There exists a Brownian motion B such that

1
S 178 (Tins) — T(U™) = oB(ns)| = o(1).
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Generalized Linear Statistics |l

Consequently, (@
Brownian Motion.

(Tins) = T(U™)

Furthermore, the sequence

( ns|

v/2nloglogn

converges weakly to a
se[0,1]

( lns|] — T(U_1))se[0,1]>

nelN
is almost surely relatively compact in the space of bounded continuous
functions C[0, 1] (equipped with the supremum norm) and the limit set
is

1
{f: [0,1] — R|f(0) = 0, / f2(s)ds < 1}.
0
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