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Kiefer-Müller Process

Let (Xn)n∈N be iid uniformly on [0,1] and Fn(t) := 1
n
∑n

i= 1{Xn≤t}. Then(
1√
n (ns(Fns(t)− t))

)
t ,s∈[0,1]

converges weakly to a Gaussian process

(G(t , s))t ,s∈[0,1] with

EG(t , s)G(t ′, s′) = min{s, s′}(min{t , t ′} − tt ′).

Theorem (Kiefer, 1972)

There exists (after enlarging the probability space) a Gaussian process
(G(t , s))t ,s∈[0,1] such that almost surely

sup
t ,s∈[0,1]

1√
n
|ns(Fns(t)− t)−G(t , s)| = O(n−

1
6 log

2
3 n).
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Bahadur Representation

66
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��Fn(t)

F (t)

tp = F−1(p)

p

Fn(tp)

F−1
n (p)− tp

F−1
n (p) := inf{t |Fn(t) ≥ p}�

�
�� Fn(tp)− p

tp − F−1
n (p)

≈ f (tp) := F ′(tp)

F−1
n (p)− tp =

p − Fn(tp)
f (tp)

+ Rn
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Bahadur Representation II

F−1
n (p)− tp =

p − Fn(tp)
f (tp)

+ Rn

How to find bounds for Rn?

Rn =
Fn(tp)− p

f (tp)
+ F−1

n (p)− tp

≈
Fn(tp)− Fn(F−1

n (p))
f (tp)

− (tp − F−1
n (p))

Theorem (Bahadur, 1966)

Let (Xn)n∈N be iid. Then almost surely

Rn = O(n−
3
4 (log n)

1
2 (log log n)

1
4 )
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Hoeffding Decomposition

g : R2 → R measurable and symmetric

Definition
The (bivariate) U-statistic Un (g) with kernel h is defined as

Un(g) :=
1(n
2

) ∑
1≤i<j≤n

g(Xi ,Xj).

Example: Gini’s mean difference

Gn :=
2

n(n − 1)

∑
1≤i<j≤n

∣∣Xi − Xj
∣∣
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Hoeffding Decomposition II

Un (g) can be decomposed into a linear part and a degenerate part

Un(g) = θ +
2
n

n∑
i=1

g1(Xi) + Un(g2)

with Var Un(g2) = O( 1
n2 ). The CLT for partial sums together with

Slutzky’s lemma imply:

Theorem (Hoeffding, 1948)

If (Xn)n∈N is a sequence of iid random variables and Var g(X ,Y ) <∞,
then √

n (Un (h)− θ)
D−→ N (0,4 Var g1(X1)) .
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U-Distribution Function

h : R3 → R bounded, measurable function, symmetric in first two
arguments, nondecreasing in third argument,

Definition (Empirical U-distribution function)

We define
Un (t) =

2
n(n − 1)

∑
1≤i<j≤n

h(Xi ,Xj , t).

(Un(t))t∈R is called empirical U-distribution function.

I example: h(x , y , t) = 1{g(x ,y)≤t}
Un(t) empirical distribution function of the sample
(g(Xi ,Xj))1≤i<j≤n

I natural estimator for U-distribution function
U(t) = E [h(X ,Y , t)] = P [g(X ,Y ) ≤ t ], where X , Y independent
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U-Quantiles

Generalization of quantiles:

Definition (U-Quantile)

Let be p ∈ (0,1). tp = U−1
n (p) := inf

{
t
∣∣Un (t) ≥ p

}
is called the p-th

empirical U-quantile.

I natural estimator of the U-quantile tp := U−1(p)
I for h(x , y , t) = 1{g(x ,y)≤t}: smallest p-quantile tp of the sample

(g(Xi ,Xj))1≤i<j≤n

I example: median of absolute differences

Qn = median
{ ∣∣Xi − Xj

∣∣ ∣∣∣∣1 ≤ i < j ≤ n
}
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Generalized Linear Statistics

Definition (GL-Statistic)

Let be p1, . . . ,pd ∈ (0,1), b1, . . . ,bd ∈ R and J a bounded function,
continuous a.e. and vanishes outside of I.

Tn = T
(

U−1
n

)
:=

∫
I
J (p)U−1

n (p)dp +
d∑

j=1

bjU−1
n (pj)

=

n(n−1)
2∑

i=1

∫ 2i
n(n−1)

2(i−1)
n(n−1)

J (t)dt · U−1
n

(
2i

n (n − 1)

)
+

d∑
j=1

bjU−1
n (pj)

is called generalized linear statistic (GL-statistic).
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Generalized Linear Statistics II

I Let h(x , y , t) := 1{|x−y |≤t}, p1 = 0.5, b = 1. The related
GL-statistic is the median of absolute differences

I Let h(x , y , t) := 1
2

(
1{x≤t} + 1{y≤t}

)
, p1 = 0.25, p2 = 0.75,

b1 = −1, b2 = 1, and J = 0.

Tn = F−1
n (0.75)− F−1

n (0.25)

is the inter quartile distance.
I Let h(x , y , t) := 1{ 1

2 (x−y)2≤t}, p1 = 0.75, b1 = 0.25 and
J(x) = 1{x∈[0,0.75]}. The related GL-statistic is called winsorized
variance.
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Mixing Conditions

Definition (Strong mixing)

α(k) := sup
n∈N

sup
A∈Fn

1 ,B∈F
∞
n+k

|P(A ∩ B)− P(A)P(B)| ,

where Fa
b is the σ-field generated by r.v.’s Xa, . . . ,Xb

(Xn)n∈N is called strongly mixing, if α(k)→ 0 as k →∞.

Definition (Absolute Regularity)

β(k) := sup
n∈N

E sup{
∣∣P(A

∣∣Fn
−∞)− P(A)

∣∣ : A ∈ F∞n+k}

(Xn)n∈N is called absolutely regular, if β(k)→ 0 as k →∞.
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Near Epoch Dependence

Definition (Near epoch dependent sequence)

Assume that Xn = f
(
(Zn+k )k∈Z

)
for a stationary process (Zn)n∈Z.

(Xn)n∈Z is called a Near epoch dependent, if

E
∣∣X1 − E(X1

∣∣Z−l , . . . ,Zl)
∣∣ ≤ al l = 0,1,2 . . .

with an → 0.

examples:
1. linear processes (with absolutely regular innovations)
2. data from dynamical systems Xn+1 = T (Xn)
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General Assumptions

Assume that one of the following two mixing conditions hold:
(M1) (Xn)n∈N is strongly mixing with mixing coefficients α(n) = O(n−α)

for α ≥ 8 and E |Xi |r <∞ for a r > 1
5 .

(M2) (Xn)n∈N is near epoch dependent on an absolutely regular
process with mixing coefficients β(n) = O(n−β) for β ≥ 8 with
approximation constants a(n) = O(n−a) for a = max {β + 3,12}.

U(t) := Eh(X ,Y , t) differentiable on (C1,C2) with
0 < inft∈(C1,C2) U ′(t) ≤ supt∈(C1,C2)

U ′(t) <∞ and

sup
s,t∈(C1,C2): |t−s|≤x

∣∣U(t)− U(s)− U ′(t)(t − s)
∣∣ = O

(
x

5
4

)
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General Assumptions II

continuity condition:

Definition (Variation Condition)

h satisfies the variation condition with constant L, if for all ε > 0

E

[
sup

‖(x ,y)−(X ,Y )‖≤ε
|h (x , y , t)− h (X ,Y , t)|

]
≤ Lε,

where X , Y are independent with same distribution as X1.

1{|x−y |≤t} satisfies the variation condition if X1 has bounded density.
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Empirical U-Process

Theorem (W., 2011)

There exists a centered Gaussian process (K (t , s))t ,s∈R with

EK (t , s)K (t ′, s′) = min {s, s′} (4 Cov [h1 (X1, t) ,h1 (X1, t ′)]

+ 4
∞∑

k=1

Cov [h1 (X1, t) ,h1 (Xk+1, t ′)]

+ 4
∞∑

k=1

Cov [h1 (Xk+1, t) ,h1 (X1, t ′)]).

such that almost surely

sup
t∈R, s∈[0,1]

1√
n

∣∣bnsc(Ubnsc(t)− U(t))− K (t ,ns)
∣∣ = o(1).
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Empirical U-process II

Theorem (W. 2010)

A.s. as n→∞

sup
t ,t ′: |t−t ′|≤C

√
log log n

n

∣∣Un (t)− Un
(
t ′
)
− u(t)(t − t ′)

∣∣
= o

(
n−

1
2−

1
8γ log n

)
for some γ = (0,1).

Proof is based on
I Hoeffding decomposition
I 4th moment inequalities
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Generalized Bahadur Representation

Rn(p) :=
Un(tp)− p

u(tp)
+ U−1

n (p)− tp

≈
Un(tp)− Un(U−1

n (p))
u(tp)

− (tp − U−1
n (p))

I supt∈R |Un(t)− U(t)| = O
(√

log log n
n

)
a.s.

I sup
p∈I

Rn(p) ≤ C sup
t ,t ′: |t−t ′|≤C

√
log log n

n

∣∣Un (t)− Un
(
t ′
)
− u(t)(t − t ′)

∣∣
Theorem (W., 2011)

A.s. as n→∞
sup
p∈I

Rn = o
(

n−
1
2−

1
8γ log n

)
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Empirical U-Quantile Process

Theorem (W., 2011)

Under the technical assumptions above there exists a centered
Gaussian process (K ′(p, s))p∈I,s∈R with covariance function

EK ′(p, s)K ′(p′, s′) =
1

u(tp)u(t ′p)
EK (tp, s)K (tp′ , s′).

such that

sup
p∈I, s∈[0,1]

1√
n

∣∣∣bnsc(U−1
bnsc(p)− tp)− K ′(p,ns)

∣∣∣ = o(1).
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Generalized Linear Statistics

Tn =T
(
U−1

n
)
:=

∫
I
J (p)U−1

n (p)dp +
d∑

j=1

bjU−1
n (pj)

σ2 =

∫
I

∫
I
EK ′(p,1)K ′(q,1)J(p)J(q)dpdq

+ 2
d∑

j=1

bj

∫
I
EK ′(p,1)K ′(pj ,1)J(p)dp +

d∑
i,j=1

bibjEK ′(pi ,1)K ′(pj ,1)

Theorem (W., 2011)

There exists a Brownian motion B such that

sup
s∈[0,1]

1√
n

∣∣∣bnsc(Tbnsc − T (U−1))− σB(ns)
∣∣∣ = o(1).
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Generalized Linear Statistics II

Consequently,
(√

ns
σ (Tbnsc − T (U−1))

)
s∈[0,1]

converges weakly to a

Brownian Motion.
Furthermore, the sequence(

bnsc
σ
√

2n log log n
(Tbnsc − T (U−1))s∈[0,1]

)
n∈N

is almost surely relatively compact in the space of bounded continuous
functions C[0,1] (equipped with the supremum norm) and the limit set
is {

f : [0,1]→ R
∣∣f (0) = 0,

∫ 1

0
f ′2(s)ds ≤ 1

}
.
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